Numerical evaluation of a deeply buried pipe testing facility

Author:

Mai Van Thien1,Hoult Neil1ORCID,Moore Ian1

Affiliation:

1. Department of Civil Engineering, Queen’s University, Kingston, ON, Canada

Abstract

A new facility for testing pipes under deep burial has been developed. However, before the facility was commissioned, the influence of the loading scheme and boundary conditions on the pipe behaviour was investigated so that the most appropriate experimental setup could be developed. Two- and three-dimensional finite element analyses were used to assess the impact of the top and side boundary conditions on both flexible and rigid pipes with varying diameters. The vertical overburden pressures expected in the field are simulated using actuators applying vertical forces to two steel grillages. The numerical results show that the use of two independent grillages on the surface produced a more uniformly distributed ‘overburden’ pressure, a novel approach that performs significantly better than previous loading systems. Proximity of the test facility’s walls to the pipes was also investigated and found to have less than a 0.2% impact on pipe response when compared to simulations of field geometries. Results examining five different approaches to reducing the effect of sidewall friction were compared to the case of zero friction (i.e. the field case), and it was found that while lubricating the wall to create a friction angle of 5° over the full height produced the most accurate results, lubrication of only the top 2.5 m of the wall also produces thrust forces and bending moments within 10% of values from the zero-friction case. Finally, the effect of the position of the pipe within the test cell was investigated, where pipe testing with 0.3 m of bedding is expected to produce results like those for pipes close to rock foundations in the field. These results are already being used to inform testing procedures using this unique facility.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

SAGE Publications

Subject

Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3