Evaluation of load–deformation behavior of reinforced concrete shear walls with continuous or lap-spliced bars in plastic hinge zone

Author:

Zhi Qing1,Zhou Binbin1,Zhu Zhangfeng2,Guo Zhengxing1

Affiliation:

1. School of Civil Engineering, Southeast University, Nanjing, China

2. School of Civil Engineering, Nanjing Tech University, Nanjing, China

Abstract

This article presents an analysis procedure for evaluation of load–deformation behavior of reinforced concrete shear walls with continuous or lap-spliced bar connections in plastic hinge zones under horizontal loads. For the shear walls with continuous bars, the lateral deformations caused by flexure, shear, and reinforcement slip are evaluated by considering their interaction. The flexural deformation is calculated by conventional fiber model. The shear mechanism is based on modified compression field theory with a softened smeared cracked reinforced concrete membrane element. Both the flexural and shear deformations are estimated separately in the plastic hinge and non-plastic hinge regions. In addition, an approach is proposed for analysis of plastic hinge length based on fracture energies of materials. For the shear walls with lap-spliced bars, due to its complicated behavior and mechanism, a simple way to deal with the lap splice is proposed. The equations regarding bond-slip of the lap splice with minimum spliced length are established and the stress and strain states of lap splices with different spliced lengths are analyzed on the basis of equilibrium of forces with a mean bond stress model. Finally, the validity of the proposed analysis procedure is confirmed by comparing the analytical results with previous experimental data.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3