Automated fatigue crack detection of orthotropic steel decks using an improved mask region-based convolutional neural network approach

Author:

Zhao Yang1,Wang Pengyu1ORCID,Cai Shunyao2ORCID,Sun Huahuai3,Wang Zhihao1

Affiliation:

1. School of Civil Engineering and Communication, North China University of Water Resources and Electric Power, Zhengzhou, China

2. Department of Construction Management, Chongqing University, Chongqing, China

3. College of Civil Science and Engineering, Yangzhou University, Yangzhou, China

Abstract

Orthotropic steel decks (OSD) are widely used in the bridge industry, but they are susceptible to fatigue cracking due to various factors such as weld defects, overload traffic, and complicated welded joint configurations. Traditional crack detection methods rely mainly on visual inspection, which is time-consuming and prone to errors. Recently, many crack detection methods based on machine vision have been introduced. However, accurately and effectively detecting fatigue cracks of OSD remains challenging due to the indistinct nature of these cracks compared to the background and their susceptibility to various types of noise. To address these problems, this research proposes an improved Mask Region-based Convolutional Neural Network (Mask R-CNN). The proposed model enhances the feature extraction ability of the original Mask R-CNN by introducing a Convolutional Block Attention Module (CBAM) and Path Augmentation Feature Pyramid Network (PAFPN) into the backbone network. Additionally, a morphological closing operation is performed on the extracted fatigue cracks to address the problem of disjoint cracks. On the basis of crack mask closure, the pixel-wise quantization of cracks was achieved using relevant OpenCV functions. Evaluation on a crack dataset of OSD shows that the proposed model outperforms other methods with precision, recall, average precision (AP), and F1 score of 83.98%, 84.44%, 77.9%, and 84.21%, respectively. In conclusion, the experiment validates that the proposed model can effectively detect, segment, and quantify fatigue cracks of OSD.

Funder

National Natural Science Foundation of China

Key R and D and Promotion Special Project of Henan Province

Publisher

SAGE Publications

Subject

Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3