Quantification of the seismic design coefficients for composite special moment frames with reinforced concrete columns and steel beams

Author:

Tavasoli Yousefabadi Elmira1ORCID,Kazemi Mohammad Taghi1

Affiliation:

1. Department of Civil Engineering, Sharif University of Technology, Tehran, Iran

Abstract

This paper explores the performance of the reinforced concrete column and steel beam (RCS) structural system at the frame-level, with a focus on evaluating the seismic design coefficients ( R-factor, Ω0, and C d) using the FEMA-P695 methodology. The RCS system offers a more efficient and cost-effective solution compared to conventional steel and RC moment-resisting frames, with higher damping and lateral stiffness of RC columns and greater energy dissipation capacity of steel beams. Although several experimental and numerical studies have evaluated the performance of the RCS system, most of them have focused on the connection-level. In this study, 32 archetypes are designed with varying building height, span length, concrete strength, gravity load level, seismic load level, and column-beam strength ratio. Nonlinear analytical models are developed for the selected archetypes, and the modeling assumptions are validated through five distinct experimental tests. The models are then subjected to both static pushover and response history analyses, and the seismic design coefficients of the archetypes are evaluated and discussed based on the FEMA-P695 methodology. The results indicate that the design requirements of the RCS system are efficient, providing a high safety margin. However, the level of conservatism is found to be excessively high. Thus, it is possible to use a larger R-factor in the design process or make some relaxations in the design requirements related to this structural system. While further research should be carried out to validate the results, this study shows that as long as the R-factor is less than R = 10, the building can be deemed sufficiently safe for seismic loadings.

Publisher

SAGE Publications

Subject

Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3