Improved online sequential extreme learning machine for identifying crack behavior in concrete dam

Author:

Dai Bo123,Gu Chongshi123,Zhao Erfeng123,Zhu Kai123,Cao Wenhan123,Qin Xiangnan123

Affiliation:

1. State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, China

2. College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing, China

3. National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Hohai University, Nanjing, China

Abstract

Prediction models are essential in dam crack behavior identification. Prototype monitoring data arrive sequentially in dam safety monitoring. Given such characteristic, sequential learning algorithms are preferred over batch learning algorithms as they do not require retraining whenever new data are received. A new methodology using the genetic optimized online sequential extreme learning machine and bootstrap confidence intervals is proposed as a practical tool for identifying concrete dam crack behavior. First, online sequential extreme learning machine is adopted to build an online prediction model of crack behavior. The characteristic vector of crack behavior, which is taken as the online sequential extreme learning machine input, is extracted by the statistical model. A genetic algorithm is introduced to optimize the input weights and biases of online sequential extreme learning machine. Second, the BC a method is proposed to produce confidence intervals based on the improved online sequential extreme learning machine prediction. The improved online sequential extreme learning machine for identifying crack behavior is then built. Third, the crack behavior of an actual concrete dam is taken as an example. The capability of the built model for predicting dam crack opening is evaluated. The comparative results demonstrate that the improved online sequential extreme learning machine can provide highly accurate forecasts and reasonably identify crack behavior.

Funder

Central University Basic Research Project

National Natural Science Foundation of China

National Key Research and Development Project

the Fundamental Research Funds for the Central Universities

Key R&D Program of Guangxi

Special Project Funded of National Key Laboratory

Postgraduate Research & Practice Innovation Program of Jiangsu Province

Jiangsu Natural Science Foundation

Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

SAGE Publications

Subject

Building and Construction,Civil and Structural Engineering

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3