Theoretical and testing investigation of wind–rain coupling loads on some typical bluff bodies

Author:

Chang Ying1,Zhao Lin1,Ge Yaojun1

Affiliation:

1. State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University, Shanghai, China

Abstract

The article presents a mathematical theoretical framework and fitting parameters with aspects of joint probability distribution of wind and rain, separate wind and rain action, and coupled wind and rain effects on steady and unsteady forces acting on some typical bluff bodies. Gumbel and copula functions were first selected to describe the joint probability distribution of wind speed and rain intensity. Then, two models, a raindrop impact model and an equivalent air density model, were adopted to quantify the loading action considering only separate wind and rain action, and simplified coupled effects with superimposition of wind and rain show that it would be accurate enough to neglect separated rain influence in steady wind and rain loading conditions. Furthermore, wind tunnel testing has been carried out under coupled wind and rain conditions with the help of a high-precision raining simulation system in TJ-1 wind tunnel on various reduced-scale models with some typical cross sections, such as circular and rectangular, thin plate, and streamlined box, and their aerodynamic loading and wind–rain-induced performance have been systematically compared. It has thus been found that the coupling effects of wind and rain should not be neglected in steady and unsteady force models.

Funder

Program for New Century Excellent Talents in University

National Natural Science Foundation of China

National Key Basic Research Program of China

Publisher

SAGE Publications

Subject

Building and Construction,Civil and Structural Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3