epiTracker: A Framework for Highly Reliable Particle Tracking for the Quantitative Analysis of Fish Movements in Tanks

Author:

Bruch Roman1ORCID,Scheikl Paul M.2,Mikut Ralf3,Loosli Felix4,Reischl Markus3

Affiliation:

1. Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany

2. Institute for Anthropomatics and Robotics, Karlsruhe Institute of Technology, Baden-Württemberg, Germany

3. Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, Baden-Württemberg, Germany

4. Institute for Toxicology and Genetics, Karlsruhe Institute of Technology, Baden-Württemberg, Germany

Abstract

Behavioral analysis of moving animals relies on a faithful recording and track analysis to extract relevant parameters of movement. To study group behavior and social interactions, often simultaneous analyses of individuals are required. To detect social interactions, for example to identify the leader of a group as opposed to followers, one needs an error-free segmentation of individual tracks throughout time. While automated tracking algorithms exist that are quick and easy to use, inevitable errors will occur during tracking. To solve this problem, we introduce a robust algorithm called epiTracker for segmentation and tracking of multiple animals in two-dimensional (2D) videos along with an easy-to-use correction method that allows one to obtain error-free segmentation. We have implemented two graphical user interfaces to allow user-friendly control of the functions. Using six labeled 2D datasets, the effort to obtain accurate labels is quantified and compared to alternative available software solutions. Both the labeled datasets and the software are publicly available.

Publisher

Elsevier BV

Subject

Medical Laboratory Technology,Computer Science Applications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3