Development of an Enhanced-Throughput Radial Cell Migration Device

Author:

Oliver C. Ryan12ORCID,Little Andrew C.1,Westerhof Trisha M.1,Pathanjeli Pragathi1,Yates Joel A.1,Merajver Sofia D.1

Affiliation:

1. Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA

2. Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA

Abstract

It is often desirable to evaluate the ability of cells to move in an unrestricted manner in multiple directions without chemical gradients. By combining the standard radial migration assay with injection-molded gaskets and a rigid fixture, we have developed a highly reliable and sensitive method for observing and measuring radial cell migration. This method is adapted for use on high-throughput automated imaging systems. The use of injection-molded gaskets enables low-cost replacement of cell-wetted components. Moreover, the design enables secondary placement of attractants and co-cultures. This device and its enhanced throughput permit the use of therapeutic screening to evaluate phenotypic responses, for example, cancer cell migration response due to drugs or chemical signals. This approach is orthogonal to other 2D cell migration applications, such as scratch wound assays, although here we offer a noninvasive, enhanced-throughput device, which currently is not commercially available but is easily constructed. The proposed device is a systematic, reliable, rapid application to monitor phenotypic responses to chemotherapeutic screens, genetic alterations (e.g., RNAi and CRISPR), supplemental regimens, and other approaches, offering a reliable methodology to survey unbiased and noninvasive cell migration.

Funder

National Institutes of Health

METAvivor

Breast Cancer Research Foundation

Publisher

Elsevier BV

Subject

Medical Laboratory Technology,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3