Flexible Automation System for Determination of Elemental Composition of Incrustations in Clogged Biliary Endoprostheses Using ICP-MS

Author:

Fleischer Heidi1,Ramani Kinjal1,Blitti Koffi1,Roddelkopf Thomas2,Warkentin Mareike3,Behrend Detlef3,Thurow Kerstin2

Affiliation:

1. Institute of Automation, University of Rostock, Rostock, Germany

2. Center for Life Science Automation (celisca), University of Rostock, Rostock, Germany

3. Chair of Materials for Medical Engineering, University of Rostock, Rostock, Germany

Abstract

Automation systems are well established in industries and life science laboratories, especially in bioscreening and high-throughput applications. An increasing demand of automation solutions can be seen in the field of analytical measurement in chemical synthesis, quality control, and medical and pharmaceutical fields, as well as research and development. In this study, an automation solution was developed and optimized for the investigation of new biliary endoprostheses (stents), which should reduce clogging after implantation in the human body. The material inside the stents (incrustations) has to be controlled regularly and under identical conditions. The elemental composition is one criterion to be monitored in stent development. The manual procedure was transferred to an automated process including sample preparation, elemental analysis using inductively coupled plasma mass spectrometry (ICP-MS), and data evaluation. Due to safety issues, microwave-assisted acid digestion was executed outside of the automation system. The performance of the automated process was determined and validated. The measurement results and the processing times were compared for both the manual and the automated procedure. Finally, real samples of stent incrustations and pig bile were analyzed using the automation system.

Publisher

Elsevier BV

Subject

Medical Laboratory Technology,Computer Science Applications

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3