Summit: Automated Analysis of Arrayed Single-Cell Gel Electrophoresis

Author:

Vlassakis Julea1ORCID,Yamauchi Kevin A.12,Herr Amy E.1ORCID

Affiliation:

1. Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA

2. The Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland

Abstract

New pipelines are required to automate the quantitation of emerging high-throughput electrophoretic (EP) assessment of DNA damage, or proteoform expression in single cells. EP cytometry consists of thousands of Western blots performed on a microscope slide-sized gel microwell array for single cells. Thus, EP cytometry images pose an analysis challenge that blends requirements for accurate and reproducible analysis encountered for both standard Western blots and protein microarrays. Here, we introduce the Summit algorithm to automate array segmentation, peak background subtraction, and Gaussian fitting for EP cytometry. The data structure storage of parameters allows users to perform quality control on identically processed data, yielding a ~6.5% difference in coefficient of quartile variation (CQV) of protein peak area under the curve (AUC) distributions measured by four users. Further, inspired by investigations of background subtraction methods to reduce technical variation in protein microarray measurements, we aimed to understand the trade-offs between EP cytometry analysis throughput and variation. We found an 11%–50% increase in protein peaks that passed quality control with a subtraction method similar to microarray “average on-boundary” versus an axial subtraction method. The background subtraction method only mildly influences AUC CQV, which varies between 1% and 4.5%. Finally, we determined that the narrow confidence interval for peak location and peak width parameters from Gaussian fitting yield minimal uncertainty in protein sizing. The AUC CQV differed by only ~1%–2% when summed over the peak width bounds versus the 95% peak width confidence interval. We expect Summit to be broadly applicable to other arrayed EP separations, or traditional Western blot analysis.

Funder

Division of Graduate Education

Division of Chemical, Bioengineering, Environmental, and Transport Systems

National Cancer Institute

society for laboratory automation and screening

Publisher

Elsevier BV

Subject

Medical Laboratory Technology,Computer Science Applications

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3