Droplet-Based Immunosensor for Simultaneous Immunoassays of Multiplex Histidine-Tagged Proteins

Author:

Chang Yaw-Jen1,Yang Hong-Wei1,Yao Len-Hao1,Yang Wen-Tung1

Affiliation:

1. Department of Mechanical Engineering, Chung Yuan Christian University, Chung Li District, Taoyuan City, Taiwan

Abstract

This paper presents a droplet-based immunoassay chip allowing each droplet to be positioned in a passive droplet-positioning cavern under continuous flow. In addition, the chip surface can immobilize any kind of histidine-tagged capture agents for performing simultaneous multiplex immunoassays. Distinct families of monodispersed droplets were generated since a diaphragm, which is a thin elastomeric flap film suspended from the top of the main channel, forms a double T junction for shearing the aqueous liquids by the carrier flow. These two types of monodispersed droplets traverse the main channel to the downstream detection area and enter the passive positioning caverns for further immunoassay. A layer of Ni–Co film was coated on the substrate by electrodeposition in order to immobilize the multiplex histidine-tagged capture molecules. In this study, the tumor suppressor protein p53 and the extracellular signal-related kinase 1 (ERK1) were used as the capture agents. Then, both histidine-tagged proteins p53 and ERK1 were immobilized by the Ni–Co layer in a microarray format for subsequent immunoassay and fluorescence detection. The experimental results show that the detected fluorescence intensity is proportioned to the concentration of the encapsulated content in a small droplet. This proposed droplet-based immunoassay chip can immobilize multiplex histidine-tagged proteins, irrelevant to the species of proteins, to carry out simultaneous immunoassays and allow the operation sequence to be conducted automatically through the manipulation of droplets.

Publisher

Elsevier BV

Subject

Medical Laboratory Technology,Computer Science Applications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3