Temporal Reorganization of the Suprachiasmatic Nuclei in Hamsters with Split Circadian Rhythms

Author:

Gorman Michael R.1,Yellon Steven M.2,Lee Theresa M.3

Affiliation:

1. Department of Psychology and Reproductive Sciences Program, University of Michigan, Ann Arbor, MI 48109-1109, USA; Department of Psychology, University of California, San Diego, La Jolla, CA 92093-0109; .

2. Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA

3. Department of Psychology and Reproductive Sciences Program, University of Michigan, Ann Arbor, MI 48109-1109, USA

Abstract

A dual oscillator basis for mammalian circadian rhythms is suggested by the splitting of activity rhythms into two components in constant light and by the photoperiodic control of pineal melatonin secretion and phase-resetting effects of light. Because splitting and photoperiodism depend on incompatible environmental conditions, however, these literatures have remained distinct. The refinement of a procedure for splitting hamster rhythms in a 24-h light-dark:light-dark cycle has enabled the authors to assess the ability of each of two circadian oscillators to initiate melatonin secretion and to respond to light pulses with behavioral phase shifting and induction of Fos-immunoreactivity in the suprachiasmatic nuclei (SCN). Hamsters exposed to a regimen of afternoon novel wheel running (NWR) split their circadian rhythms into two distinct components, dividing their activity between the latter half of the night and the afternoon dark period previously associated with NWR. Plasma melatonin concentrations were elevated during both activity bouts of split hamsters but were not elevated during the afternoon period in unsplit controls. Light pulses delivered during either the nighttime or afternoon activity bout caused that activity component to phase-delay on subsequent days and induced robust expression of Fos-immunoreactivity in the SCN. Light pulses during intervening periods of locomotor inactivity were ineffective. The authors propose that NWR splits the circadian pacemaker into two distinct oscillatory components separated by approximately 180 degrees, with each expressing a short subjective night.

Publisher

SAGE Publications

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3