The reduced autophagic response by oxidative stress in angiotensin II-induced hypertrophic H9C2 cells causes more apoptotic cell death

Author:

Chen Ching-Yi1,Hsu Hsiu-Ching2,Chen Ming-Fong2

Affiliation:

1. Department of Animal Science and Technology, National Taiwan University, Taipei 10672, Taiwan

2. Department of Internal Medicine, National Taiwan University Hospital, Taipei 10672, Taiwan

Abstract

Autophagy is an important process in the pathogenesis of cardiovascular diseases, and angiotensin II (Ang II) plays a causative role in the induction of cardiomyocyte autophagy. The purpose of this study was to explore whether, under conditions of oxidative stress, levels and types of cell death were different in untreated and Ang II-treated cardiomyocytes (H9C2 cells). Treatment with 20 µM Ang II induced cardiac hypertrophy in H9C2 cells, with increased expression of the hypertrophic markers c-Fos, ß-myosin heavy chain, atrial natriuretic factor (ANF), and brain natriuretic factor (BNF). Under normal conditions, there was no difference in the levels of autophagic vacuoles and apoptotic bodies in untreated and Ang II-treated H9C2 cells. However, oxidative stress generated by 100 µM H2O2 triggered autophagy in untreated control cells, but had a reduced effect in Ang II-induced hypertrophic cells, resulting in more cell death, and this was associated with a decrease in connexin 43 expression. Blocking this autophagic response with 3-methyladenine resulted in a significant increase in cell death and apoptosis of H9C2 cells but did not significantly affect the response of Ang II-treated cells. The autophagic response to 100 µM H2O2 provides a survival advantage for cells and this is reduced by Ang II treatment.

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3