Affiliation:
1. Department of Biological Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
2. Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275, USA
Abstract
The vastness of the neuronal network that constitutes the human brain proves challenging when trying to understand its complexity. Furthermore, due to the senescent state they enter into upon maturation, neurons lack the ability to regenerate in the face of insult, injury or death. Consequently, their excessive death can be detrimental to the proper functioning of the brain. Therefore, elucidating the mechanisms regulating neuronal survival is, while challenging, of great importance as the incidence of neurological disease is becoming more prevalent in today’s society. Nucleophosmin/B23 (NPM) is an abundant and ubiquitously expressed protein that regulates vital cellular processes such as ribosome biogenesis, cell proliferation and genomic stability. As a result, it is necessary for proper embryonic development, but has also been implicated in many cancers. While highly studied in the context of proliferative cells, there is a lack of understanding NPM’s role in post-mitotic neurons. By exploring its role in healthy neurons as well as its function in the regulation of cell death and neurodegeneration, there can be a better understanding of how these diseases initiate and progress. Owing to what is thus far known about its function in the cell, NPM could be an attractive therapeutic target in the treatment of neurodegenerative diseases.
Subject
General Biochemistry, Genetics and Molecular Biology
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献