Affiliation:
1. Hematology Center, University of Campinas-UNICAMP, Barão Geraldo 13083-8, Campinas, SP, Brazil
2. Vanguard Therapeutics, Inc., California, CA 94019, USA
Abstract
The pathophysiology of sickle cell anemia, a hereditary hemoglobinopathy, has fascinated clinicians and scientists alike since its description over 100 years ago. A single gene mutation in the HBB gene results in the production of abnormal hemoglobin (Hb) S, whose polymerization when deoxygenated alters the physiochemical properties of red blood cells, in turn triggering pan-cellular activation and pathological mechanisms that include hemolysis, vaso-occlusion, and ischemia-reperfusion to result in the varied and severe complications of the disease. Now widely regarded as an inflammatory disease, in recent years attention has included the role of leukocytes in vaso-occlusive processes in view of the part that these cells play in innate immune processes, their inherent ability to adhere to the endothelium when activated, and their sheer physical and potentially obstructive size. Here, we consider the role of sickle red blood cell populations in elucidating the importance of adhesion vis-a-vis polymerization in vaso-occlusion, review the direct adhesion of sickle red cells to the endothelium in vaso-occlusive processes, and discuss how red cell- and leukocyte-centered mechanisms are not mutually exclusive. Given the initial clinical success of crizanlizumab, a specific anti-P selectin therapy, we suggest that it is appropriate to take a holistic approach to understanding and exploring the complexity of vaso-occlusive mechanisms and the adhesive roles of the varied cell types, including endothelial cells, platelets, leukocytes, and red blood cells.
Subject
General Biochemistry, Genetics and Molecular Biology
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献