High-resolution 3D tractography of fibrous tissue based on polarization-sensitive optical coherence tomography

Author:

Yao Gang1ORCID,Duan Dongsheng2

Affiliation:

1. Department of Biomedical, Biological & Chemical Engineering, University of Missouri, Columbia, MO 65211, USA

2. Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65211, USA

Abstract

Fibrous tissues play important roles in many parts of the body. Their highly organized directional structure is essential in achieving their normal biomechanical and physiological functions. Disruption of the typical fiber organization in these tissues is often linked to pathological changes and disease progression. Tractography is a specialized imaging method that can reveal the detailed fiber architecture. Here, we review recent developments in high-resolution optical tractography using Jones matrix polarization-sensitive optical coherence tomography. We also illustrate the use of this new tractography technology for visualizing depth-resolved, three-dimensional fibrous structures and quantifying tissue damages in several major fibrous tissues.Impact statementOrganized fiber structure plays an essential role in realizing normal biological functions in fibrous tissues. A thorough understanding of the structure–function relationship in these tissues is crucial for developing effective technology to diagnose and treat diseases. Tractography imaging is an effective tool in visualizing and quantifying fiber architecture in fibrous tissues. This review describes a recently developed tractography technology that has shown great promise for fast image of 3D fiber organization with microscopic details.

Funder

Congressionally Directed Medical Research Programs

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3