Affiliation:
1. Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, P.R. China
2. Department of Rheumatology and Immunology, Huaihe Hospital of Henan University, Henan, Kaifeng 475000, P.R. China
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by chronic destructive joint disease. To date, the etiology and pathogenesis of RA have not been fully elucidated, but a large number of studies have indicated that hypoxia is an important feature of RA. Our study was designed to probe how hypoxia-induced exosome (exo) derived from synovial fibroblasts (SFs) affect RA. In this study, we found that hypoxic environment existed in synovial tissue of RA, and miR-424 expression was increased in RA, and exosome derived from synovial fibroblasts (SFs-exo) could significantly induce T cells differentiation, which Th17 cells increased and Treg cells decreased. Besides, SFs-exo affected the expression of related inflammatory cytokines. And, we also found that FOXP3 was a target gene of miR-424 and exo-miR-424 KD inhibited RA worsening. These results suggested that SFs-exo in hypoxia aggravates rheumatoid arthritis by regulating Treg/Th17 balance and thus may be a potential therapeutic target for RA. Impact statement A comparative study of osteoarthritis (OA) and RA mice was implemented to suggest that miR-424 expression was increased in RA, and exosome-miR-424 derived from synovial fibroblasts (SFs-exo) could significantly induce T cells differentiation in which Th17 cells increased and Treg cells decreased via targeting FOXP3. And thus, miR-424 may be a potential therapeutic target for RA.
Funder
Medical Science and Technology Joint Project of Henan Province
Science and Technology Development Project of Kaifeng
Subject of Scientifific Research on Traditional Chinese Medicine in Henan Province
Subject
General Biochemistry, Genetics and Molecular Biology
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献