Alginate microfibers as therapeutic delivery scaffolds and tissue mimics

Author:

Xie Yubing1ORCID,Kollampally Sujith Chander Reddy1,Jorgensen Matthew1,Zhang Xulang1

Affiliation:

1. College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY 12203, USA

Abstract

Alginate, a naturally occurring polysaccharide, has been widely used in cell encapsulation, 3D culture, cell therapy, tissue engineering, and regenerative medicine. Alginate’s frequent use comes from its biocompatibility and ability to easily form hydrogel in a variety of forms (e.g. microcapsules, microfibers, and porous scaffolds), which can provide immunoprotection for cell therapy and mimic the extracellular matrix for tissue engineering. During the past 15 years, alginate hydrogel microfibers have attracted more and more attention due to its continuous thin tubular structures (diameter or shell thickness ⩽ 200 µm), high-density cell growth, high handleability and retrievability, and scalability. This review article provides a concise overview of alginate and its resultant hydrogel microfibers for the purpose of promoting multidisciplinary, collaborative, and convergent research in the field. It starts with a historical review of alginate as biomaterials and provides basics about alginate structure, properties, and mechanisms of hydrogel formation, followed by current challenges in effective cell delivery and functional tissue engineering. In particular, this work discusses how alginate microfiber technology could provide solutions to unmet needs with a focus on the current state of the art of alginate microfiber technology and its applications in 3D cell culture, cell delivery, and tissue engineering. At last, we discuss future directions in the perspective of alginate-based advanced technology development in biology and medicine.

Funder

National Institute of Dental and Craniofacial Research

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3