Influence of Maternal Stress on Uranium-Induced Developmental Toxicity in Rats

Author:

Albina M. Luisa1,Belles Montserrat1,Gomez Mercedes1,Sanchez Domenec J.1,Domingo Jose L.1

Affiliation:

1. Laboratory of Toxicology and Environmental Health, School of Medicine, “Rovira i Virgili” University, 43201 Reus, Spain

Abstract

It has been demonstrated that uranium is an embryo/fetal toxicant when given orally or subcutaneously to pregnant mice. On the other hand, maternal stress has been shown to enhance the developmental toxicity of a number of metals. In this study, maternal toxicity and developmental effects of a concurrent exposure to uranyl acetate dihydrate (UAD) and restraint stress were evaluated in rats. Four groups of pregnant animals were given subcutaneous injections of UAD at 0.415 and 0.830 mg/kg/day on Days 6 to 15 of gestation. Animals in two of these groups were also subjected to restraint for 2 hr/day during the same gestational days. Control groups included restrained and unrestrained pregnant rats not exposed to UAD. Cesarean sections were performed on gestation Day 20, and the fetuses were weighed and examined for malformations and variations. Maternal toxicity and embryotoxicity were noted at 0.830 mg/kg/day of UAD, while fetotoxicity was evidenced at 0.415 and 0.830 mg/kg/day of UAD by significant reductions in fetal body weight and increases in the total number of skeletally affected fetuses. No teratogenic effects were noted in any group. Maternal restraint enhanced uranium-induced embryo/fetal toxicity only at 0.830 mg/kg/day, a dose that was also significantly toxic to the dams. As in previous studies with other metals, maternal stress enhances uranium-induced developmental toxicity at uranium doses that are highly toxic to the dams; however, at doses that are less acutely toxic the role of maternal stress would not be significant.

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3