A novel compressive stress-based osteoarthritis-like chondrocyte system

Author:

Young In-Chi1,Chuang Sung-Ting2,Gefen Amit3,Kuo Wei-Ting1,Yang Chun-Ting1,Hsu Chia-Hsien4,Lin Feng-Huei1

Affiliation:

1. Institute of Biomedical Engineering, National Taiwan University, Taipei 10672, Taiwan

2. Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan

3. Department of Biomedical Engineering, Tel Aviv University, Ramat Aviv 69978, Israel

4. Institute of Biomedical Engineering and Nanomedicine, National Health Research Institute, Miaoli 35053, Taiwan

Abstract

Mechanical stress damage and insufficient self-repair can contribute to osteoarthritis (OA) in the affected joint. As the effects of stress on chondrocyte metabolism can regulate cartilage homeostasis, the specific stress–response condition is therefore a key to the generation of an OA disease model. We aimed to produce a specific stress- and cell-based OA model after evaluating the metabolic responses of chondrocytes in response to a series of static and cyclic compression stressors. A static load exceeding 40 psi initiated extracellular matrix (ECM) degradation through a decrease in the sulphated-glycosaminoglycan (GAG) content, upregulation of catabolic matrix metalloproteinase (MMP)-13 encoding gene expression, and downregulation of the ECM-related aggrecan and type II collagen encoding genes within 24 h. Indicators of pro-inflammatory events and oxidative stress were found to correlate with increased IL-6 expression and reactive oxygen species (ROS) production, respectively. However, chondrocytes stimulated by moderate cyclic loading (30–40 psi) exhibited increased ECM-related gene expression without significant changes in catabolic and pro-inflammatory gene expression. BMP-7 expression increased at cyclic loading levels above 30–60 psi. These results demonstrated that static compression exceeding 60 psi is sufficient to produce OA-like chondrocytes that exhibit signs of ECM degradation and inflammation. These OA-like chondrocytes could therefore be used as a novel cell-based drug screening system. Impact statement The lack of an effective treatment for osteoarthritis (OA) reflects the great need for alternative therapies and drug discovery. Disease models can be used for early-stage compound screening and disease studies. Chondrocytes are solely responsible for the maintenance of the articular cartilage extracellular matrix. Our strategy involved the generation of a cell-based model of OA, a more readily studied disease. Instead of using animal cartilage explants, we incorporated isolated porcine chondrocytes with hydrogel to form three-dimensional assemblies. We could identify the specific magnitude-dependent metabolic responses of chondrocytes by applying a series of static and cyclic compression, and therefore successfully generated a novel OA-like cell-based model for drug screening.

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3