Featured Article: Beta cell specific pyruvate dehydrogenase alpha gene deletion results in a reduced islet number and β-cell mass postnatally

Author:

Patel Mulchand S1,Srinivasan Malathi1,Strutt Brenda2,Mahmood Saleh1,Hill David J23

Affiliation:

1. Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo 14214, NY

2. Lawson Research Institute, St. Joseph's Health Centre, London, Ontario N6A 4V2, Canada

3. Department of Medicine, Physiology, and Paediatrics, University of Western Ontario, London, Ontario N6A 3K7, Canada

Abstract

The ability of pancreatic β-cells to undertake glucose-stimulated insulin secretion (GSIS) depends on the generation of adenosine triphosphate (ATP) within the mitochondria from pyruvate, a major rate-limiting enzyme being pyruvate dehydrogenase (PDH) complex (PDC). However, glucose metabolism also controls β-cell mass. To examine the role of PDC in the regulation of pancreatic β-cell development and maturation, we generated β-cell-targeted PDHα subunit knock-out male mice (β-PDHKO) and compared these with control males (β-PDHCT) from birth until 6–8 weeks age. Pancreas morphology, transcription factor expression, pancreatic insulin content, and circulating glucose and insulin values were compared. Compared to β-PDHCT male mice, β-PDHKO animals had significantly reduced pancreatic insulin content from birth, a lower serum insulin content from day 15, and relative hyperglycemia from day 30. Isolated islets from β-PDHKO mice demonstrated a reduced GSIS. The number of islets per pancreatic area, mean islet area, and the proportion of islet cells that were β-cells were all reduced in β-PDHKO animals. Similarly the number of insulin-immunopositive, extra-islet small endocrine cell clusters, a possible source of β-cell progenitors, was lower in β-PDHKO mice. Analysis of pancreatic expression of transcription factors responsible for β-cell lineage commitment, proliferation, and maturation, Pdx1, Neurogenin3, and NeuroD1 showed that mRNA abundance was reduced in the β-PDHKO. This demonstrates that PDC is not only required for insulin expression and glucose-stimulated secretion, but also directly influences β-cell growth and maturity, and positions glucose metabolism as a direct regulator of β-cell mass and plasticity.

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3