Brain Pathways Controlling Food Intake and Body Weight

Author:

Schwartz Michael W.1

Affiliation:

1. Department of Medicine, University of Washington and Harborview Medical Center, Seattle, Washington 98104

Abstract

Evidence has existed for more than 50 years in support of the hypothesis that body energy stored in the form of fat is homeostatically regulated. Implicit in this concept is the existence of a biological system that operates dynamically over time to match cumulative energy intake to energy expenditure. For example, to compensate for weight loss induced by energy restriction, animals must enter a period of positive energy balance (i.e., energy intake greater than energy expenditure) that is sustained for as long as it takes to correct the deficit in body fat stores. Having reached this point, the animal must return to a state of neutral energy balance if stable fat mass is to be maintained. The identification of neuronal circuits in the hypothalamus that, when activated, exert potent, unidirectional effects on energy balance provides a cornerstone of support for this model. The additional finding that these central effector pathways are regulated by humoral signals generated in proportion to body fat stores, including the hormones insulin and leptin, helps to round out the picture of how energy homeostasis is achieved. The goal of this overview is to highlight the evidence that specific subsets of hypothalamic neurons containing specific signaling molecules participate in this dynamic regulatory process, and to put these observations in the larger context of a biological system that controls body adiposity.

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 109 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3