Modulation of miR29a improves impaired post-ischemic angiogenesis in hyperglycemia

Author:

Chen Lingdan1,Okeke Emmanuel2,Ayalew Dawit1,Wang Danny1,Shahid Lyeba1,Dokun Ayotunde O2

Affiliation:

1. Division of Endocrinology, Department of Medicine and The Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22910, USA

2. Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA

Abstract

Individuals with diabetes mellitus suffer from impaired angiogenesis and this contributes to poorer peripheral arterial disease outcomes. In experimental peripheral arterial disease, angiogenesis and perfusion recovery are impaired in mice with diabetes. We recently showed that a disintegrin and metalloproteinase domain-containing protein 12 (ADAM12) is upregulated in ischemic endothelial cells and plays a key role in post-ischemic angiogenesis and perfusion recovery following experimental peripheral arterial disease. Here we investigated the role of miR29a in the regulation of endothelial cell ADAM12 expression in ischemia and how hyperglycemia negatively affects this regulation. We also explored whether modulating miR29a can improve impaired post-ischemic angiogenesis associated with hyperglycemia. Additionally, we tested whether miR29a modulation could improve post ischemic angiogenesis in the setting of impaired vascular endothelial growth factor signaling. We forced miR29a expression in ischemic endothelial cells and assessed ADAM12 expression. We also evaluated whether hyperglycemia in vivo and in vitro impair ischemia-induced ADAM12 upregulation and miR29a downregulation. Lastly, we determined whether modulating endothelial cell miR29a expression in ischemia and hyperglycemia could improve impaired endothelial cell functions. We found under ischemic conditions where ADAM12 is upregulated in endothelial cells, miR29a is downregulated. Forced expression of miR29a in ischemic endothelial cell prevented ADAM12 upregulation . In ischemic hind limbs of mice with type 1 diabetes and in endothelial cells exposed to simulated ischemia plus hyperglycemia, ADAM12 upregulation and miR29a downregulation were blunted while angiogenesis was impaired. Knocking down miR29a with an miR29a inhibitor was sufficient to improve ADAM12 upregulation and angiogenesis in simulated ischemia plus hyperglycemia. It was also sufficient to improve perfusion recovery in type 1 diabetes mellitus mice in vivo and angiogenesis in vitro even when vascular endothelial growth factor signaling was impaired with blocking antibodies. In conclusion, MiR29a regulates endothelial cell ADAM12 upregulation in ischemia and this is impaired in hyperglycemia. Modulating miR29a improves impaired post-ischemic angiogenesis associated with hyperglycemia. Impact statement Individuals with diabetes are more likely to develop peripheral arterial disease (PAD), and when PAD is present, in those with diabetes, it is more severe and there is currently no effective medical treatment for impaired blood flow which occurs in diabetics with PAD. The current work advances the field by providing an understanding of a molecular mechanism involved in impaired post ischemic angiogenesis in diabetes. It shows for the first time that failure to downregulate miR29a in ischemic diabetic tissues is a major contributing factor to poor perfusion recovery in experimental PAD, and miR29a is elevated in skeletal muscle samples from human diabetics compared with levels in those without diabetes. Knocking down the elevated miR29a in ischemic diabetic mouse hind limbs improved perfusion recovery following experimental PAD. This shows miR29a modulation as a novel therapeutic target for improving blood flow in diabetics with PAD.

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3