Cell cycle disturbances in mucopolysaccharidoses: Transcriptomic and experimental studies on cellular models

Author:

Brokowska Joanna1,Gaffke Lidia1,Pierzynowska Karolina1,Cyske Zuzanna1,Węgrzyn Grzegorz1ORCID

Affiliation:

1. Department of Molecular Biology, University of Gdansk, 80-308 Gdansk, Poland

Abstract

Mucopolysaccharidoses (MPS) are a group of lysosomal storage diseases caused by defects in genes coding for proteins involved in degradation of glycosaminoglycans (GAGs). These complex carbohydrates accumulate in cells causing their serious dysfunctions. Apart from the physical GAG storage, secondary and tertiary changes may contribute significantly to the pathomechanism of the disease. Among processes which were not systematically investigated in MPS cells to date there is the cell cycle. Here, we studied perturbances in this crucial cellular process in majority of MPS types. Transcriptomic analyses indicated that expression of many genes coding for proteins involved in the cell cycle is dysregulated in all tested MPS cells. Importantly, levels of transcripts of particular genes were changed in the same manner (i.e. either up- or down-regulated) in most or all types of the disease, indicating a common mechanism of the dysregulation. Flow cytometric studies demonstrated that the cell cycle is disturbed in all MPS types, with increased fractions of cells in the G0/G1 phase in most types and decreased fractions of cells in the G2/M phase in all types. We found that increased levels of cyclin D1 and disturbed timing of its appearance during the cell cycle may contribute to the mechanism of dysregulation of this process in MPS. Reduction of GAG levels by either a specific enzyme or genistein-mediated inhibition of synthesis of these compounds improved, but not fully corrected, the cell cycle in MPS fibroblasts. Therefore, it is suggested that combination of the therapeutic approaches devoted to reduction of GAG levels with cyclin D1 inhibitors might be considered in further works on developing effective treatment procedures for MPS.

Funder

Narodowe Centrum Nauki

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3