Effects of Docosahexaenoic Acid on Vascular Pathology and Reactivity in Hypertension

Author:

Engler Marguerite M.1,Engler Mary B.1,Pierson Diane M.2,Molteni Loredana Brizio2,Molteni Agostino2

Affiliation:

1. Laboratory of Cardiovascular Physiology, Department of Physiological Nursing, University of California, San Francisco, California 94143–0610

2. Department of Pathology and Pharmacology, University of Missouri, School of Medicine, Kansas City, Missouri 64108

Abstract

Previous studies have shown that docosahexaenoic acid (DHA) has an antihypertensive effect in spontaneously hypertensive rats (SHR). To investigate possible mechanisms for this effect, vascular pathology and reactivity were determined in SHR treated with dietary DHA. SHR (7 weeks) were fed a purified diet with either a combination of corn/soybean oils or a DHA-enriched oil for 6 weeks. Histological evaluation of heart tissue, aorta, coronary, and renal arteries was performed. Vascular responses were determined in isolated aortic rings. Contractile responses to agonists, including norepinephrine (10–9 to 10–4 M), potassium chloride (5–55 mM), and angiotensin II (5 × 10–7 M) were assessed. Vasorelaxant responses to acetylcholine (10–9 to 10–4 M), sodium nitroprusside (10–9 to 10–6 M), papaverine ((10–5 to (10–4 M), and methoxyverapamil (D600, 1–100 μM) were determined. DHA-fed SHR had significantly reduced blood pressure (P < 0.001) and vascular wall thicknesses in the coronary, thoracic, and abdominal aorta compared with controls (P < 0.05) Contractile responses to agonists mediated by receptor stimulation and potassium depolarization were not altered in DHA-fed SHR. Endothelial-dependent relaxations to acetylcholine were not altered which suggests endothelial-derived nitric oxide production/release is not affected by dietary DHA. Other mechanisms of vascular relaxation, including intracellular cyclic nucleotides, cGMP, and cAMP were not altered by dietary DHA because aortic relaxant responses to sodium nitroprusside and papaverine were similar in control and DHA-fed SHR. No significant differences were seen in relaxant responses to the calcium channel blocker, D600, or contractile responses to norepinephrine in the absence of extracellular calcium. These results suggest that dietary DHA does not affect mechanisms related to extracellular calcium channels or intracellular calcium mobilization. Moreover, the contractile and vasorelaxant responses are not differentially altered with dietary DHA in this in vivo SHR model. The findings demonstrate that dietary DHA reduces systolic blood pressure and vascular wall thickness in SHR. This may contribute to decrease arterial stiffness and pulse pressure, in addition to the antihypertensive properties of DHA. The antihypertensive properties of DHA are not related to alterations in vascular responses.

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3