Contusion concomitant with ischemia injury aggravates skeletal muscle necrosis and hinders muscle functional recovery

Author:

Deng Peijun1234ORCID,Qiu Shuai1234,Liao Fawei1234,Jiang Yifei1234,Zheng Canbin1234,Zhu Qingtang1234

Affiliation:

1. Department of Microsurgery, Orthopedic Trauma and Hand Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China

2. Guangdong Province Engineering Laboratory for Soft Tissue Biofabrication, Guangzhou 510080, China

3. Guangdong Provincial Peripheral Nerve Tissue Engineering and Technology Research Center, Guangzhou 510080, China

4. Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou 510080, China

Abstract

Contusion concomitant with ischemia injury to skeletal muscles is common in civilian and battlefield trauma. Despite their clinical importance, few experimental studies on these injuries are reported. The present study established a rat skeletal muscle contusion concomitant with ischemia injury model to identify skeletal muscle alterations compared with contusion injury or ischemia injury. Macroscopic and microscopic morphological evaluation showed that contusion concomitant with ischemia injury aggravated muscle edema and hematoxylin–eosin (HE) injury score at 24 h postinjury. Serum creatine kinase (CK) and lactate dehydrogenase (LDH) levels, together with gastrocnemius muscle (GM) tumor necrosis factor-alpha (TNF-α) content elevated at 24 h postinjury too. During the 28-day follow-up, electrophysiological and contractile impairment was more severe in the contusion concomitant with ischemia injury group. In addition, contusion concomitant with ischemia injury decreased the percentage of larger (600–3000 μm2) fibers and increased the fibrotic area and collagen I proportion in the GM. Smaller proportions of Pax7+ and MyoD+ satellite cells (SCs) were observed in the contusion concomitant with ischemia injury group at 7 days postinjury. In conclusion, contusion concomitant with ischemia injury to skeletal muscle not only aggravates early muscle fiber necrosis but also hinders muscle functional recovery by impairing SC differentiation and exacerbating fibrosis during skeletal muscle repair.

Funder

National Natural Science Foundation of China

Guangdong Basic and Applied Basic Research Foundation

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3