Cone photoreceptor reflectance variation in the northern tree shrew and thirteen-lined ground squirrel

Author:

Gaffney Mina1ORCID,Cooper Robert F12,Cava Jenna A1ORCID,Follett Hannah M1,Salmon Alexander E34,Freling Susan5,Yu Ching T3,Merriman Dana K6ORCID,Carroll Joseph123

Affiliation:

1. Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI 53226, USA

2. Department of Biomedical Engineering, Marquette University, Milwaukee, WI 53233, USA

3. Department of Cell Biology, Neurobiology, & Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA

4. Translational Imaging Innovations, Inc., Hickory, NC 28601, USA

5. Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA

6. Department of Biology, University of Wisconsin Oshkosh, Oshkosh, WI 54901, USA

Abstract

In vivo images of human cone photoreceptors have been shown to vary in their reflectance both spatially and temporally. While it is generally accepted that the unique anatomy and physiology of the photoreceptors themselves drives this behavior, the exact mechanisms have not been fully elucidated as most studies on these phenomena have been limited to the human retina. Unlike humans, animal models offer the ability to experimentally manipulate the retina and perform direct in vivo and ex vivo comparisons. The thirteen-lined ground squirrel and northern tree shrew are two emerging animal models being used in vision research. Both models feature cone-dominant retinas, overcoming a key limitation of traditional rodent models. Additionally, each possesses unique but well-documented anatomical differences in cone structure compared to human cones, which can be leveraged to further constrain theoretical models of light propagation within photoreceptors. Here we sought to characterize the spatial and temporal reflectance behavior of cones in these species. Adaptive optics scanning light ophthalmoscopy (AOSLO) was used to non-invasively image the photoreceptors of both species at 5 to 10 min intervals over the span of 18 to 25 min. The reflectance of individual cone photoreceptors was measured over time, and images at individual time points were used to assess the variability of cone reflectance across the cone mosaic. Variability in spatial and temporal photoreceptor reflectance was observed in both species, with similar behavior to that seen in human AOSLO images. Despite the unique cone structure in these animals, these data suggest a common origin of photoreceptor reflectance behavior across species. Such data may help constrain models of the cellular origins of photoreceptor reflectance signals. These animal models provide an experimental platform to further explore the morphological origins of light capture and propagation.

Funder

National Center for Research Resources

National Eye Institute

Foundation Fighting Blindness

Alcon Research Institute

National Center for Advancing Translational Sciences

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3