Intermittent hypoxia stimulates formation of binuclear neurons in brain cortex—A role of cell fusion in neuroprotection?

Author:

Paltsyn Alexander A12,Manukhina Eugenia B13,Goryacheva Anna V1,Downey H Fred3,Dubrovin Ivan P1,Komissarova Svetlana V1,Kubatiev Aslan A12

Affiliation:

1. Institute of General Pathology and Pathophysiology, Moscow 125315, Russia

2. Russian Medical Academy of Postgraduate Education, Moscow 125315, Russia

3. University of North Texas Health Science Center, Fort Worth, Texas 76107, USA

Abstract

Oligodendrocyte fusion with neurons in the brain cortex is a part of normal ontogenesis and is a possible means of neuroregeneration. Following such fusion, the oligodendrocyte nucleus undergoes neuron-specific reprogramming, resulting in the formation of binuclear neurons, which doubles the functional capability of the neuron. In this study, we tested the hypothesis that the formation of binuclear neurons is involved in long-term adaptation of the brain to intermittent hypobaric hypoxia, which is known to be neuroprotective. Rats were adapted to hypoxia in an altitude chamber at a simulated altitude of 4000 m above sea level for 14 days (30 min increasing to 4 h, daily). One micrometer sections of the left motor cortex were analyzed by light microscopy. Phases of the fusion and reprogramming process were recorded, and the number of binuclear neurons was counted for all section areas containing pyramidal neurons of layers III–V. For the control group subjected to sham hypoxia, the density of binuclear neurons was 4.49 ± 0.32 mm2. In the hypoxia-adapted group, this density increased to 5.71 ± 0.39 mm2 ( P < 0.04). In a subgroup of rats exposed to only one hypoxia session, the number of binuclear neurons did not differ from the number observed in the control group. We suggest that the increased content of binuclear neurons may serve as a structural basis for the neuroprotective effects of the adaptation to hypoxia.

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3