An increase in polyadenylation of histone isoforms, Hist1h2ah and Hist2h3c2, is governed by 3′-UTR in de-differentiated and undifferentiated hepatocyte

Author:

Verma Tripti12,Natu Abhiram12,Khade Bharat1,Gera Poonam3,Gupta Sanjay12ORCID

Affiliation:

1. Epigenetics and Chromatin Biology Group, Gupta Lab, Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai 410210, India

2. Homi Bhabha National Institute, Mumbai 400094, India

3. Biorepository, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai 410210, India

Abstract

Replication-dependent histones have a stem-loop structure at the 3′ end of messenger RNA (mRNA) and are stabilized by stem-loop binding protein (SLBP). Moreover, loss of SLBP and imbalance in the level of ARE (adenylate-uridylate-rich elements)-binding proteins, HuR, and BRF1 are associated with the polyadenylation of canonical histone mRNAs under different physiological conditions. Previous studies from the lab have shown increased protein levels of H2A1H and H3.2 in N-nitrosodiethylamine (NDEA)-induced hepatocellular carcinoma (HCC). In this study, we report that increase in the polyadenylation of histone mRNA contributes to increased levels of H2A1H and H3.2 in NDEA-induced HCC. The persistent exposure to carcinogen with polyadenylation of histone mRNA increases the total histone pool resulting in aneuploidy. The embryonic liver has also shown increased polyadenylated histone isoforms, Hist1h2ah and Hist2h3c2, primarily contributing to their increased protein levels. The increase in polyadenylation of histone mRNA in HCC and e15 are in coherence with the decrease in SLBP and BRF1 with an increase in HuR. Our studies in neoplastic CL38 cell line showed that direct stress on the cells induces downregulation of SLBP with enhanced histone isoform polyadenylation. Moreover, the polyadenylation is related to increase in activated MAP kinases, p38, ERK, and JNK in HCC liver tumor tissues and CL38 cells treated with arsenic. Our data suggest that SLBP degrades under stress, destabilizing the stem-loop, elongating histone isoforms mRNA with 3′ polyadenylated tail with increase of HuR and decrease of BRF1. Overall, our results indicate that SLBP may play an essential part in cell proliferation, at least in persistent exposure to stress, by mediating the stabilization of histone isoforms throughout the cell cycle.

Funder

Advanced Centre for Treatment Research and Education in Cancer

Publisher

Frontiers Media SA

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3