Mammalian Septin Function in Hemostasis and Beyond

Author:

Martinez Constantino1,Ware Jerry1

Affiliation:

1. Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205

Abstract

Interest in the biology of mammalian septin proteins has undergone a birth in recent years. Originally identified as critical for yeast budding throughout the 1970s, the septin family is now recognized to extend from yeast to humans and is associated with a variety of events ranging from cytokinesis to vesicle trafficking. An emerging theme for septins is their presence at sites where active membrane or cytoplasmic partitioning is occurring. Here, we briefly review the mammalian septin protein family and focus on a prototypic human and mouse septin, termed SEPT5, that is expressed in the brain, heart, and megakaryocytes. Work from neurobiology laboratories has linked SEPT5 to the exocytic complex of neurons, with implications that SEPT5 regulates neurotransmitter release. Striking similarities exist between neurotransmitter release and the platelet-release reaction, which is a critical step in platelet response to vascular injury. Work from our laboratory has characterized the platelet phenotype from mice containing a targeted deletion of SEPT5. Most strikingly, platelets from SEPT5null animals aggregate and release granular contents in response to subthreshold levels of agonists. Thus, the characterization of a SEPT5-deficient mouse has linked SEPT5 to the Platelet exocytic process and, as such, illustrates it as an important protein for regulating platelet function. Recent data suggest that platelets contain a wide repertoire of different septin proteins and assemble to form macromolecular septin complexes. The mouse platelet provides an experimental framework to define septin function in hemostasis, with implications for neurobiology and beyond.

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3