Effects of Growth Hormone and Insulin-Like Growth Factor-1 on Hepatocyte Antioxidative Enzymes

Author:

Brown-Borg Holly M.1,Rakoczy Sharlene G.1,Romanick Mark A.1,Kennedy Melissa A.1

Affiliation:

1. Department of Pharmacology, Physiology and Therapeutics, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58203

Abstract

The physiological decline that occurs in aging is thought to result, in part, from accumulation of oxidative damage generated by reactive oxygen species during normal metabolic processes. Elevated levels of antioxidative enzymes in liver tissues are present in the Ames dwarf, a growth hormone (GH)-deficient mouse that lives more than 1 year longer than wild-type mice from the same line. In contrast, transgenic mice that overexpress GH exhibit depressed hepatic levels of catalase and have significantly shortened life spans. In this study, we evaluated the in vitro effects of GH and Insulin-like growth factor 1 (IGF-1) on antioxidative enzymes in mouse hepatocytes. Hepatocytes were isolated from wild-type mice following perfusion of livers with a collagenase-based buffer. Dispersed cells were plated on Matrlgel and treated with rat GH (0.1, 1.0, or 10 μg/ml) or IGF-1 (0.5, 5.0, or 50 nM) for 24 hr. Hepatocytes were recovered and protein was extracted for immunoblotting and enzyme activity assays of catalase (CAT), glutathione peroxidase (GPX), and manganese superoxide dismutase (MnSOD). A 41% and 27% decrease in catalase activity was detected in cells treated with GH, whereas IGF-1 reduced CAT activity levels to a greater extent than GH (P < 0.0001). The activity and protein levels of GPX were also significantly depressed In cells treated with GH, whereas activity alone was decreased in cells treated with IGF-1 (P < 0.04). GH significantly suppressed MnSOD levels by 40% and 66% in 1.0 and 0.1 μg/ml concentrations, respectively. Similarly, IGF-1 decreased MnSOD protein levels (5 nM; P < 0.05). These results suggest that GH and IGF-1 may decrease the ability of hepatocytes to counter oxidative stress. In addition, these experiments provide an explanation for the differing antioxidative defense capacity of GH-deficient versus GH-overexpressing mice, and they suggest that GH is directly involved in antioxidant regulation and the aging process.

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 99 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3