Comparative evaluation of CacyBP/SIP protein, β-catenin, and immunoproteasome subunit LMP7 in the heart of rats with hypertension of different etiology

Author:

Kasacka Irena1,Piotrowska Żaneta1,Weresa Jolanta2,Filipek Anna3

Affiliation:

1. Department of Histology and Cytophysiology, Medical University of Bialystok, Bialystok 15-222, Poland

2. Department of Experimental Physiology and Pathophysiology, Medical University of Bialystok, Bialystok 15-222, Poland

3. Laboratory of Calcium Binding Proteins, Nencki Institute of Experimental Biology, Warsaw 02-093, Poland

Abstract

Calcyclin-binding protein/Siah-1-interacting protein (CacyBP/SIP) is the recently discovered peptide, which participates in various intracellular processes. Recent reports indicated that CacyBP/SIP activates the ubiquitin ligases and promotes proteasomal degradation of proteins. One of the most important proteins degraded in CacyBP/SIP-dependent pathway is β-catenin. Considering the key importance of β-catenin in the functioning of the cardiovascular system and in the view of the close relationship between CacyBP/SIP, β-catenin, and proteasomal activity, we have decided to undertake research to identify and evaluate the distribution of CacyBP/SIP, β-catenin and the LMP7 subunit of the immunoproteasome in the heart of rats with hypertension of various etiology. The studies were carried out on the hearts of rats with spontaneous hypertension (SHR), renovascular hypertension, and DOCA-salt hypertension. The myocardial expression of CacyBP/SIP, β-catenin, and LMP7 was detected by immunohistochemistry using the EnVision method. The hypertension significantly increased the immunoreactivity to CacyBP/SIP and LMP-7, while weakening the β-catenin immunoreaction. The intensity of the observed changes depends on the type of hypertension. Our results show an innovative and important network of interactions between proteins potentially involved in the development and progression of heart problems in various types of hypertension. This report might contribute to deeper understanding of the role of the CacyBP/SIP protein, β-catenin, and immunoproteasomes in heart function, as well as to bringing new information concerning pathophysiologic mechanisms leading to cardiac dysfunction in the state of elevated blood pressure. Impact statement Despite extensive research into the pathogenesis of hypertension and disease-related end organ damage, the mechanisms leading to cardiac complications of hypertensive patients are still not fully elucidated. The aim of the presented research was immunodetection and evaluation of CacyBP/SIP, β-catenin, and proteasomes in the hearts of rats with hypertension of different etiology. Our results show an innovative and important network of interactions between proteins potentially involved in the development and progression of heart problems in various types of hypertension. This report might contribute to deeper understanding of the role of the CacyBP/SIP protein, β-catenin, and proteasomes in heart function. Our results might also bring new information concerning the intracellular processes and signal pathways involved in the regulation of cardiomyocytes functioning in hypertension state. In addition to cognitive significance, the results of presented studies may contribute to further successes in preventing and treatment of cardiac complications associated with hypertension.

Funder

Uniwersytet Medyczny w Bialymstoku

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3