Novel small-molecule compound VCP979 attenuates renal fibrosis in male rats with unilateral ureteral obstruction

Author:

Min Shudan1,Chang Di1,Wang Yuan-Cheng1,Xu Ting-Ting1,Ge Hong1,Zhang Jilei2,Wang Binghui34,Ju Shenghong1ORCID

Affiliation:

1. Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China

2. Clinical Science, Philips Healthcare, Shanghai 200072, China

3. Biomarker Discovery Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia

4. Monash Centre of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne VIC 3004, Australia

Abstract

Renal fibrosis is a hallmark of chronic kidney disease, while efficient therapy against renal fibrosis is still lacking. In this study, we investigated the role of a novel small-molecule compound VCP979 on renal fibrosis and inflammation in a rat model of unilateral ureteral obstruction (UUO). One week after the UUO surgery, rats were administered VCP979 by gavage for one week, and after treatment, magnetic resonance imaging of T1rho mapping and histopathological analysis were performed to evaluate renal fibrosis in vivo and ex vivo. This study showed that treatment with VCP979 effectively reduced renal fibrosis, extracellular matrix accumulation, and alleviated epithelial–mesenchymal transition in UUO rats, as well as improved renal function. In vivo T1rho mapping displayed increased T1rho values in the UUO rats, which was decreased after VCP979 treatment, and a positive correlation was detected between the T1rho values and the percentage of fibrotic area. Moreover, the administration of VCP979 also ameliorated the inflammatory cytokines expression and the infiltration of macrophages in renal tissues. Mechanistically, VCP979 treatment inhibited the activation of p38 mitogen–activated protein kinase, nuclear factor-kappa B, and transforming growth factor-β1/Smads signaling pathways. These results indicated that VCP979 could be an effective therapeutic agent for alleviating renal fibrosis and inflammation in the rat model of UUO via its antifibrotic and anti-inflammatory effects.

Funder

Science Foundation for Creative Research Groups of the Ministry of Science and Technology of China

National Natural Science Foundation of China

Key Research and Development Program of Jiangsu Province

Natural Science Foundation of Jiangsu Province

Publisher

Frontiers Media SA

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3