Exploring effects of DNA methylation and gene expression on pan-cancer drug response by mathematical models

Author:

Lv Wenhua1,Zhang Xingda2,Dong Huili3,Wu Qiong3,Sun Baoqing4ORCID,Zhang Yan4ORCID

Affiliation:

1. College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China

2. Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China

3. School of Life Science and Technology, Computational Biology Research Center, Harbin Institute of Technology, Harbin 150001, China

4. Guangzhou Institute of Respiratory health, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 51000, China

Abstract

Since genetic alteration only accounts for 20%–30% in the drug effect-related factors, the role of epigenetic regulation mechanisms in drug response is gradually being valued. However, how epigenetic changes and abnormal gene expression affect the chemotherapy response remains unclear. Therefore, we constructed a variety of mathematical models based on the integrated DNA methylation, gene expression, and anticancer drug response data of cancer cell lines from pan-cancer levels to identify genes whose DNA methylation is associated with drug response and then to assess the impact of epigenetic regulation of gene expression on the sensitivity of anticancer drugs. The innovation of the mathematical models lies in: Linear regression model is followed by logistic regression model, which greatly shortens the calculation time and ensures the reliability of results by considering the covariates. Second, reconstruction of prediction models based on multiple dataset partition methods not only evaluates the model stability but also optimizes the drug-gene pairs. For 368,520 drug-gene pairs with P < 0.05 in linear models, 999 candidate pairs with both AUC ≥ 0.8 and P < 0.05 were obtained by logistic regression models between drug response and DNA methylation. Then 931 drug-gene pairs with 45 drugs and 491 genes were optimized by model stability assessment. Integrating both DNA methylation and gene expression markedly increased predictive power for 732 drug-gene pairs where 598 drug-gene pairs including 44 drugs and 359 genes were prioritized. Several drug target genes were enriched in the modules of the drug-gene-weighted interaction network. Besides, for cancer driver genes such as EGFR, MET, and TET2, synergistic effects of DNA methylation and gene expression can predict certain anticancer drugs’ responses. In summary, we identified potential drug sensitivity-related markers from pan-cancer levels and concluded that synergistic regulation of DNA methylation and gene expression affect anticancer drug response.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3