Clinical development of fenretinide as an antineoplastic drug: Pharmacology perspectives

Author:

Cooper Jason P123,Reynolds C Patrick12456,Cho Hwangeui12,Kang Min H1245

Affiliation:

1. Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA

2. Department of Cell Biology & Biochemistry, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA

3. Divisions of Hematology and Medical Oncology, Fred Hutchinson Cancer Research Center and University of Washington School of Medicine, Seattle, WA 98109, USA

4. Department of Pharmacology & Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA

5. Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA

6. Department of Pediatrics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA

Abstract

Fenretinide (4-HPR) is a synthetic retinoid that has cytotoxic activity against cancer cells. Despite substantial in vitro cytotoxicity, response rates in early clinical trials with 4-HPR have been less than anticipated, likely due to the low bioavailability of the initial oral capsule formulation. Several clinical studies have shown that the oral capsule formulation at maximum tolerated dose (MTD) achieved <10 µmol/L concentrations in patients. To improve bioavailability of 4-HPR, new oral powder (LYM-X-SORB®, LXS) and intravenous lipid emulsion (ILE) formulations are being tested in early-phase clinical trials. ILE 4-HPR administered as five-day continuous infusion achieved over 50 µmol/L at MTD with minimal systemic toxicities; multiple complete and partial responses were observed in peripheral T cell lymphomas. The LXS oral powder 4-HPR formulation increased plasma levels approximately two-fold at MTD in children without dose-limiting toxicities and demonstrated multiple complete responses in recurrent neuroblastoma. The clinical activity observed with new 4-HPR formulations is attributed to increased bioavailability. Phase I and II clinical trials of both LXS 4-HPR and ILE 4-HPR are in progress as a single agent or in combination with other drugs. Impact statement One of the critical components in drug development is understanding pharmacology (especially pharmacokinetics) of the drugs being developed. Often the pharmacokinetic properties, such as poor solubility leading to poor bioavailability, of the drug can limit further development of the drug. The development of numerous drugs has often halted at clinical testing stages, and several of them were due to the pharmacological properties of the agents, resulting in increased drug development cost. The current review provides an example of how improved clinical activity can be achieved by changing the formulations of a drug with poor bioavailability. Thus, it emphasizes the importance of understanding pharmacologic characteristics of the drug in drug development.

Funder

National Cancer Institute

Cancer Prevention and Research Institute of Texas

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3