Humic Acid Induces Oxidative DNA Damage, Growth Retardation, and Apoptosis in Human Primary Fibroblasts

Author:

Cheng Mei-Ling1,Ho Hung-Yao12,Huang Yi-Wen1,Lu Fung-Jou3,Chiu Daniel Tsun-Yee1

Affiliation:

1. Graduate Institute of Medical Biotechnology and School of Medical Technology, Chang Gung University, Kwei-san, Tao-yuan, Taiwan

2. Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, New York 10016

3. Department of Biochemistry and Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan

Abstract

Humic acid (HA) has been implicated as an etiological factor of Blackfoot disease endemic in the southwest coast of Taiwan. Dysfunction of endothelial cells and vasculopathy have been proposed to explain the onset of ulcerous changes at extremities. However, little is known about the effect of HA on activities of cells in these nonhealing wounds. In the present study, we demonstrate that HA adversely affects the growth properties of fibroblasts, one of the key players in wound repair. HA treatment caused growth arrest and apoptosis in human foreskin fibroblasts (HFF). This was accompanied by a significant increase in the level of 8-hydroxy-2′-deoxyguanosine (8-OHdG) in cellular DNA. The increased fluorescence in dichlorofluorescin (H2DCF)-stained and HA-treated cells suggests the involvement of reactive oxygen species (ROS) in HA-induced biological effects. Conversely, vitamin E pretreatment, which significantly reduced the 8-OHdG formation in HA-treated cells, alleviated the growth-inhibitory and apoptosis-inducing effects of HA. These results indicate that HA initiates oxidative damages to fibroblasts, and leads to their dwindling growth potential and survival. The present study suggests that HA-induced growth retardation and apoptosis of fibroblasts may play a role in the pathogenesis of Blackfoot disease.

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3