Apelin-13 prevents the effects of oxygen–glucose deprivation/reperfusion on bEnd.3 cells by inhibiting AKT–mTOR signaling

Author:

Zhang Rumin1,Wu Fei1,Cheng Baohua1,Wang Chunmei1,Bai Bo1,Chen Jing12ORCID

Affiliation:

1. Neurobiology Key Laboratory of Jining Medical University, Jining 272067, China

2. Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK

Abstract

Autophagy plays works by degrading misfolded proteins and dysfunctional organelles and maintains intracellular homeostasis. Apelin-13 has been investigated as an agent that might protect the blood–brain barrier (BBB) from cerebral ischemia/reperfusion (I/R) injury. In this study, we examined whether apelin-13 protects cerebral microvascular endothelial cells, important components of the BBB, from I/R injury by regulating autophagy. To mimic I/R injury, the mouse cerebral microvascular endothelia l cell line bEnd 3 undergoes the process of oxygen and glucose deprivation and re feeding in the process of culture. Cell viability was detected using a commercial kit, and cell migration was monitored by in vitro scratch assay. The tight junction (TJ) proteins ZO-1 and occludin; the autophagy markers LC3 II, beclin 1, and p62; and components of the AKT–mTOR signaling pathway were detected by Western blotting and immunofluorescence. To confirm the role of autophagy in OGD/R and the protective effect of apelin-13, we treated the cells with 3-methyladenine (3-MA), a pharmacological inhibitor of autophagy. Our results demonstrated that OGD/R increased autophagic activity but decreased viability, abundance of TJs, and migration. Viability and TJ abundance were further reduced when the OGD/R group was treated with 3-MA. These results indicated that bEnd.3 upregulates autophagy to ameliorate the effects of OGD/R injury on viability and TJs, but that the autophagy induced by OGD/R alone is not sufficient to protect against the effect on cell migration. Treatment of OGD/R samples with apelin-13 markedly increased viability, TJ abundance, and migration, as well as autophagic activity, whereas 3-MA inhibited this increase, suggesting that apelin-13 exerted its protective effects by upregulating autophagy.

Funder

National Natural Science Foundation of China

natural science foundation of shandong province

Tai-Shan scholars’ program

jining medical university

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3