Eugenol alleviates neuronal damage via inhibiting inflammatory process against pilocarpine-induced status epilepticus

Author:

Zhu Jing1,Park Soojin1,Kim Chul Hoon2,Jeong Kyoung Hoon3ORCID,Kim Won-Joo4

Affiliation:

1. Department of Neurology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea

2. Department of Pharmacology, Brain Korea 21 Project, Brain Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea

3. Epilepsy Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea

4. Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea

Abstract

Neuroinflammation is one of the most common pathological outcomes in various neurological diseases. A growing body of evidence suggests that neuroinflammation plays a pivotal role in the pathogenesis of epileptic seizures. Eugenol is the major phytoconstituent of essential oils extracted from several plants and possesses protective and anticonvulsant properties. However, it remains unclear whether eugenol exerts an anti-inflammatory effect to protect against severe neuronal damage induced by epileptic seizures. In this study, we investigated the anti-inflammatory action of eugenol in an experimental epilepsy model of pilocarpine-induced status epilepticus (SE). To examine the protective effect of eugenol via anti-inflammatory mechanisms, eugenol (200 mg/kg) was administrated daily for three days after pilocarpine-induced SE onset. The anti-inflammatory action of eugenol was evaluated by examining the expression of reactive gliosis, pro-inflammatory cytokines, nuclear factor-κB (NF-κB), and the nucleotide-binding domain leucine-rich repeat with a pyrin-domain containing 3 (NLRP3) inflammasome. Our results showed that eugenol reduced SE-induced apoptotic neuronal cell death, mitigated the activation of astrocytes and microglia, and attenuated the expression of interleukin-1β and tumor necrosis factor α in the hippocampus after SE onset. Furthermore, eugenol inhibited NF-κB activation and the formation of the NLRP3 inflammasome in the hippocampus after SE. These results suggest that eugenol is a potential phytoconstituent that suppresses the neuroinflammatory processes induced by epileptic seizures. Therefore, these findings provide evidence that eugenol has therapeutic potential for epileptic seizures.

Funder

National Research Foundation of Korea funded by the Ministry of Education

National Research Foundation of Korea funded by the Korea government

Publisher

Frontiers Media SA

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3