Gut reactions: How the blood–brain barrier connects the microbiome and the brain

Author:

Logsdon Aric F12,Erickson Michelle A12,Rhea Elizabeth M12,Salameh Therese S12,Banks William A12

Affiliation:

1. Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98159, USA

2. Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA

Abstract

A growing body of evidence indicates that the microbiome interacts with the central nervous system (CNS) and can regulate many of its functions. One mechanism for this interaction is at the level of the blood–brain barriers (BBBs). In this minireview, we examine the several ways the microbiome is known to interact with the CNS barriers. Bacteria can directly release factors into the systemic circulation or can translocate into blood. Once in the blood, the microbiome and its factors can alter peripheral immune cells to promote interactions with the BBB and ultimately with other elements of the neurovascular unit. Bacteria and their factors or cytokines and other immune-active substances released from peripheral sites under the influence of the microbiome can cross the BBB, alter BBB integrity, change BBB transport rates, or induce release of neuroimmune substances from the barrier cells. Metabolic products produced by the microbiome, such as short-chain fatty acids, can cross the BBB to affect brain function. Through these and other mechanisms, microbiome–BBB interactions can influence the course of diseases as illustrated by multiple sclerosis. Impact statement The connection between the gut microbiome and central nervous system (CNS) disease is not fully understood. Host immune systems are influenced by changes to the microbiota and offers new treatment strategies for CNS disease. Preclinical studies provide evidence of changes to the blood–brain barrier when animals are subject to experimental gut infection or when the animals lack a normal gut microbiome. The intestine also contains a barrier, and bacterial factors can translocate to the blood and interact with host immune cells. These metastatic bacterial factors can signal T-cells to become more CNS penetrant, thus providing a novel intervention for treating CNS disease. Studies in humans show the therapeutic effects of T-cell engineering for the treatment of leukemia, so perhaps a similar approach for CNS disease could prove effective. Future research should begin to define the bacterial species that can cause immune cells to differentiate and how these interactions vary amongst CNS disease models.

Funder

National Institutes of Health

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3