Blockade of CXCR2 signalling: A potential therapeutic target for preventing neutrophil-mediated inflammatory diseases

Author:

Boppana Nithin B1,Devarajan Asokan2,Gopal Kaliappan3,Barathan Muttiah4,Bakar Sazaly A4,Shankar Esaki M4,Ebrahim Abdul S5,Farooq Shukkur M6

Affiliation:

1. Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA

2. Division of Cardiology, Department of Medicine, University of California, Los Angeles, Westwood, CA 90095, USA

3. Department of Orthopedics, Faculty of Medicine, National Orthopedics Center for Excellence in Research and Learning (NOCERAL), University of Malaya, Lembah Pantai, Kuala Lumpur 50603, Malaysia

4. Department of Medical Microbiology, Faculty of Medicine, Tropical Infectious Disease Research and Education Center (TIDREC), University of Malaya, Lembah Pantai, Kuala Lumpur 50603, Malaysia

5. Department of Internal Medicine, Wayne State University, Detroit, MI 48201, USA

6. Department of Pharmacy Practice, Wayne State University, Detroit, MI 48201, USA

Abstract

Polymorphonuclear neutrophils (PMN) play a key role in host innate immune responses by migrating to the sites of inflammation. Furthermore, PMN recruitment also plays a significant role in the pathophysiology of a plethora of inflammatory disorders such as chronic obstructive pulmonary disease (COPD), gram negative sepsis, inflammatory bowel disease (IBD), lung injury, and arthritis. Of note, chemokine-dependent signalling is implicated in the amplification of immune responses by virtue of its role in PMN chemotaxis in most of the inflammatory diseases. It has been clinically established that impediment of PMN recruitment ameliorates disease severity and provides relief in majority of other immune-associated disorders. This review focuses on different novel approaches clinically proven to be effective in blocking chemokine signalling associated with PMN recruitment that includes CXCR2 antagonists, chemokine analogs, anti-CXCR2 monoclonal antibodies, and CXCR2 knock-out models. It also highlights the significance of the utility of nanoparticles in drugs used for blocking migration of PMN to the sites of inflammation.

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3