Affiliation:
1. Department of Hematology Aminu Kano Teaching Hospital and Bayero University, Kano 11399, Nigeria
2. Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
3. Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
Abstract
Sickle cell disease (SCD) is characterized by vaso-occlusion, hemolysis, and systemic manifestations that form the hallmark of the disease. Apart from morbidity, SCD is also associated with increased mortality and decreased quality of life. Aging is a natural phenomenon that is associated with changes at cellular, tissue, and organ levels, in addition to the loss of physical fitness, increased susceptibility to diseases, and a higher likelihood of mortality. Some of the cellular mechanisms involved in normal (or physiological) aging include abnormalities of sphingolipids (ceramides) and reduced length of the telomere. These changes have also been documented in SCD. Cellular, organs, and physical manifestations of SCD resemble an accelerated aging syndrome. Sickle erythrocytes also acquire morphological features similar to that of aged normal erythrocytes and are thus picked up early by the macrophages for destruction. Brain, kidney, heart, innate and adaptive immune system, and musculoskeletal system of patients with SCD exhibit morphological and functional changes that are ordinarily seen in the elderly in the general population. Stroke, silent cerebral infarcts, cardiomegaly, heart failure, pulmonary hypertension, nephropathy with proteinuria, osteopenia, osteoporosis, osteonecrosis, gout, and infections are exceedingly common in SCD. In this review, we have attempted to draw parallels between SCD and accelerated aging syndromes.
Funder
national institutes of health
National Institutes of Health
american society of hematology
Subject
General Biochemistry, Genetics and Molecular Biology
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献