NANOG expression in human development and cancerogenesis

Author:

Grubelnik Gašper1ORCID,Boštjančič Emanuela1,Pavlič Ana1,Kos Marina2ORCID,Zidar Nina1ORCID

Affiliation:

1. Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana 1000, Slovenia

2. Clinical Hospital Center Sestre Milosrdnice and University of Zagreb Medical School, Zagreb 10 000, Croatia

Abstract

NANOG is an important stem cell transcription factor involved in human development and cancerogenesis. Its expression is complex and regulated on different levels. Moreover, NANOG protein might regulate hundreds of target genes at the same time. NANOG is crucial for preimplantation development phase and progressively decreases during embryonic stem cells differentiation, thus regulating embryonic and fetal development. Postnatally, NANOG is undetectable or expressed in very low amounts in the majority of human tissues. NANOG re-expression can be detected during cancerogenesis, already in precancerous lesions, with increasing levels of NANOG in high grade dysplasia. NANOG is believed to enable cancer cells to obtain stem-cell like properties, which are believed to be the source of expanding growth, tumor maintenance, metastasis formation, and tumor relapse. High NANOG expression in cancer is frequently associated with advanced stage, poor differentiation, worse overall survival, and resistance to treatment, and is therefore a promising prognostic and predictive marker. We summarize the current knowledge on the role of NANOG in cancerogenesis and development, including our own experience. We provide a critical overview of NANOG as a prognostic and diagnostic factor, including problems regarding its regulation and detection. Impact statement NANOG has emerged as a key stem cell transcription factor in normal development and cancerogenesis. It is generally regarded as a good prognostic and predictive factor in various human cancers. It is less known that it is expressed already at precancerous stages in various organs, suggesting that finally an ideal candidate diagnostic marker has been discovered, enabling to distinguish between true dysplasia and reactive atypia. NANOG regulation is complex, and new insights into our understanding of its regulation might provide important information for future development in a broad field of two entirely different processes, i.e. normal development and cancerogenesis, showing how a physiologic mechanism can be used and abused, transforming itself into a key mechanism of disease development and progression.

Funder

Javna Agencija za Raziskovalno Dejavnost RS

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3