Deep learning diagnostic performance and visual insights in differentiating benign and malignant thyroid nodules on ultrasound images

Author:

Liu Yujiang1,Feng Ying1ORCID,Qian Linxue1,Wang Zhixiang12,Hu Xiangdong1

Affiliation:

1. Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China

2. Department of Radiation Oncology (Maastro), GROW—School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht 6229 ET, The Netherlands

Abstract

This study aims to construct and evaluate a deep learning model, utilizing ultrasound images, to accurately differentiate benign and malignant thyroid nodules. The objective includes visualizing the model’s process for interpretability and comparing its diagnostic precision with a cohort of 80 radiologists. We employed ResNet as the classification backbone for thyroid nodule prediction. The model was trained using 2096 ultrasound images of 655 distinct thyroid nodules. For performance evaluation, an independent test set comprising 100 cases of thyroid nodules was curated. In addition, to demonstrate the superiority of the artificial intelligence (AI) model over radiologists, a Turing test was conducted with 80 radiologists of varying clinical experience. This was meant to assess which group of radiologists’ conclusions were in closer alignment with AI predictions. Furthermore, to highlight the interpretability of the AI model, gradient-weighted class activation mapping (Grad-CAM) was employed to visualize the model’s areas of focus during its prediction process. In this cohort, AI diagnostics demonstrated a sensitivity of 81.67%, a specificity of 60%, and an overall diagnostic accuracy of 73%. In comparison, the panel of radiologists on average exhibited a diagnostic accuracy of 62.9%. The AI’s diagnostic process was significantly faster than that of the radiologists. The generated heat-maps highlighted the model’s focus on areas characterized by calcification, solid echo and higher echo intensity, suggesting these areas might be indicative of malignant thyroid nodules. Our study supports the notion that deep learning can be a valuable diagnostic tool with comparable accuracy to experienced senior radiologists in the diagnosis of malignant thyroid nodules. The interpretability of the AI model’s process suggests that it could be clinically meaningful. Further studies are necessary to improve diagnostic accuracy and support auxiliary diagnoses in primary care settings.

Funder

Minimally invasive ablation versus surgical resection of benign symptomatic thyroid nodules: a multicenter controlled study. Capital Medical Development Research Fund of Beijing.

Publisher

Frontiers Media SA

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3