Bidirectional Encoder Representations from Transformers-like large language models in patient safety and pharmacovigilance: A comprehensive assessment of causal inference implications

Author:

Wang Xingqiao1,Xu Xiaowei1,Liu Zhichao2,Tong Weida3ORCID

Affiliation:

1. Department of Information Science, University of Arkansas at Little Rock, Little Rock, AR 72204, USA

2. Nonclinical Drug Safety, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT 06877, USA

3. FDA/National Center for Toxicological Research, Jefferson, AR 72079, USA

Abstract

Causality assessment is vital in patient safety and pharmacovigilance (PSPV) for safety signal detection, adverse reaction management, and regulatory submission. Large language models (LLMs), especially those designed with transformer architecture, are revolutionizing various fields, including PSPV. While attempts to utilize Bidirectional Encoder Representations from Transformers (BERT)-like LLMs for causal inference in PSPV are underway, a detailed evaluation of “fit-for-purpose” BERT-like model selection to enhance causal inference performance within PSPV applications remains absent. This study conducts an in-depth exploration of BERT-like LLMs, including generic pre-trained BERT LLMs, domain-specific pre-trained LLMs, and domain-specific pre-trained LLMs with safety knowledge-specific fine-tuning, for causal inference in PSPV. Our investigation centers around (1) the influence of data complexity and model architecture, (2) the correlation between the BERT size and its impact, and (3) the role of domain-specific training and fine-tuning on three publicly accessible PSPV data sets. The findings suggest that (1) BERT-like LLMs deliver consistent predictive power across varied data complexity levels, (2) the predictive performance and causal inference results do not directly correspond to the BERT-like model size, and (3) domain-specific pre-trained LLMs, with or without safety knowledge-specific fine-tuning, surpass generic pre-trained BERT models in causal inference. The findings are valuable to guide the future application of LLMs in a broad range of application.

Publisher

Frontiers Media SA

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3