Metallothionein Redox Cycle and Function

Author:

Kang Y. James1

Affiliation:

1. Departments of Medicine and Pharmacology & Toxicology, University of Louisville School of Medicine, Louisville, KY 40292

Abstract

The biologic function of metallothionein (MT) has been a perplexing topic ever since the discovery of this protein. Many studies have suggested that MT plays a role in the homeostasis of essential metals such as zinc and copper, detoxification of toxic metals such as cadmium, and protection against oxidative stress. However, mechanistic insights into the actions of MT have not been adequately achieved. MT contains high levels of sulfur. The mutual affinity of sulfur and transition metals makes the binding of these metals to MT thermodynamically stable. Under physiologic conditions, zinc-MT is the predominant form of the metal-binding protein. The recognition of the redox regulation of zinc release from or binding to MT provides an alternate perspective on biologic function of MT. Oxidation of the thiolate cluster by a number of mild cellular oxidants causes zinc release and formation of MT-disulfide (or thionin if all metals are released from MT, but this is unlikely to occur In vivo), which have been demonstrated in vivo. Therefore, the thermodynamic stability of zinc binding makes MT an ideal zinc reservoir in vivo, and the redox regulation of zinc mobilization enables MT function in zinc homeostasis. MT-disulfide can be reduced by glutathione in the presence of selenium catalyst, restoring the capacity of the protein to bind zinc. This MT redox cycle may play a crucial role in MT biologic function. It may link to the homeostasis of essential metals, detoxification of toxic metals and protection against oxidative stress.

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3