Adenosine A2B receptor stimulates angiogenesis by inducing VEGF and eNOS in human microvascular endothelial cells

Author:

Du Xiaolong1,Ou Xuehai2,Song Tao2,Zhang Wentao2,Cong Fei2,Zhang Shihui2,Xiong Yongmin1

Affiliation:

1. Institute of Endemic Diseases, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an Jiaotong University, Xi'an Shaanxi 710061, China

2. School of Medicine, Xi'an Jiao Tong University, Xi’an Shaanxi 710061, China

Abstract

Angiogenesis is critical to wound repair due to its role in providing oxygen and nutrients that are required to support the growth and function of reparative cells in damaged tissues. Adenosine receptors are claimed to be of paramount importance in driving wound angiogenesis by inducing VEGF. However, the underlying mechanisms for the regulation of adenosine receptors in VEGF as well as eNOS remain poorly understood. In the present study, we found that adenosine and the non-selective adenosine receptor agonists (NECA) induced tube formation in HMEC-1 in a dose-dependent manner. Adenosine or NECA (10 µmol/L) significantly augmented the number and length of the segments in comparison with the control. Simultaneously, VEGF and eNOS were significantly upregulated following the administration of 10 µmol/L NECA, while they were suppressed after A2B AR genetic silencing and pharmacological inhibition by MRS1754. In addition, VEGF expression and eNOS bioavailability elimination significantly reduced the formation of capillary-like structures. Furthermore, the activation of A2B AR by NECA significantly increased the intracellular cAMP levels and concomitant CREB phosphorylation, eventually leading to the production of VEGF in HMEC-1. However, the activated PKA-CREB pathway seemed to be invalidated in the induction of eNOS. Moreover, we found that the elicited PI3K/AKT signaling in response to the induction of NECA assisted in regulating eNOS but failed to impact on VEGF generation. In conclusion, the A2B AR activation-driven angiogenesis via cAMP-PKA-CREB mediated VEGF production and PI3K/AKT-dependent upregulation of eNOS in HMEC-1.

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3