The role of extracellular matrix in normal and pathological pregnancy: Future applications of microphysiological systems in reproductive medicine

Author:

O’Connor Blakely B1,Pope Benjamin D1,Peters Michael M1,Ris-Stalpers Carrie2,Parker Kevin K1ORCID

Affiliation:

1. Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering; Harvard John A. Paulson School of Engineering and Applied Sciences; Harvard University, Cambridge, MA 02138, USA

2. Department of Gynecology and Obstetrics, Academic Reproduction and Development, Amsterdam UMC, University of Amsterdam, Amsterdam 1105, The Netherlands

Abstract

Remodeling of extracellular matrix in the womb facilitates the dramatic morphogenesis of maternal and placental tissues necessary to support fetal development. In addition to providing a scaffold to support tissue structure, extracellular matrix influences pregnancy outcomes by facilitating communication between cells and their microenvironment to regulate cellular adhesion, migration, and invasion. By reviewing the functions of extracellular matrix during key developmental milestones, including fertilization, embryo implantation, placental invasion, uterine growth, and labor, we illustrate the importance of extracellular matrix during healthy pregnancy and development. We also discuss how maladaptive matrix expression contributes to infertility and obstetric diseases such as implantation failure, preeclampsia, placenta accreta, and preterm birth. Recently, advances in engineering the biotic–abiotic interface have potentiated the development of microphysiological systems, known as organs-on-chips, to represent human physiological and pathophysiological conditions in vitro. These technologies may offer new opportunities to study human fertility and provide a more granular understanding of the role of adaptive and maladaptive remodeling of the extracellular matrix during pregnancy.Impact statementExtracellular matrix in the womb regulates the initiation, progression, and completion of a healthy pregnancy. The composition and physical properties of extracellular matrix in the uterus and at the maternal–fetal interface are remodeled at each gestational stage, while maladaptive matrix remodeling results in obstetric disease. As in vitro models of uterine and placental tissues, including micro-and milli-scale versions of these organs on chips, are developed to overcome the inherent limitations of studying human development in vivo, we can isolate the influence of cellular and extracellular components in healthy and pathological pregnancies. By understanding and recreating key aspects of the extracellular microenvironment at the maternal–fetal interface, we can engineer microphysiological systems to improve assisted reproduction, obstetric disease treatment, and prenatal drug safety.

Funder

Wyss Institute for Biologically Inspired Engineering at Harvard University

Harvard Materials Research Science and Engineering Center

Eunice Kennedy Shriver National Institute of Child Health and Human Development

Life Science Research Foundation - Good Ventures Fellow

Harvard John A. Paulson School of Engineering and Applied Sciences

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3