Featured Article: AMPKα2 deficiency enhanced susceptibility to ventricular arrhythmias in mice by the role of β-adrenoceptor signaling

Author:

Cao Hong1234,Wang Xin134,Ying Shaozheng134,Huang Congxin134

Affiliation:

1. Departments of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China

2. Department of Gerontology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China

3. Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China

4. Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China

Abstract

AMP-activated protein kinase-α2 is the main catalytic subunit of the heart, which is mainly located in cardiac myocytes. The effect of AMP-activated protein kinase-α2 on the cardiac electrophysiology is barely studied. From the previous study, it is possible that AMP-activated protein kinase-α2 may have some effect on the electrophysiology of the heart. To prove the hypothesis, we used the AMP-activated protein kinase-α2 knockout (AMPKα2−/−) mice to estimate the electrophysiological characteristics of AMPKα2−/− mice and try to find the mechanism between them. We used AMP-activated protein kinase-α2 gene knockout (AMPKα2−/−) mice and control wild-type mice as the experimental animals. In the experiment, we measured the monophasic action potential duration and test the inducibility to ventricular arrhythmia in isolated mice heart with and without β-adrenoceptor antagonist metoprolol. Meanwhile, plasma concentration of catecholamine was collected. We found that AMPKα2−/− significantly shortened 90% repolarization of monophasic action potential (MAP) (MAPD90) than wild-type (47.4 ± 2.6 ms vs. 55.5 ± 2.4 ms, n = 10, P < 0.05) and were more vulnerable to be induced to ventricular arrhythmias (70% (7/10) vs. 10% (1/10), P < 0.05), accompanied by the higher concentration of catecholamine (epinephrine: 1.75 ± 0.18 nmol/L vs. 0.68 ± 0.10 nmol/L n = 10, P < 0.05; norepinephrine: 9.56 ± 0.71 nmol/L vs. 2.52 ± 0.31 nmol/L n = 10, P < 0.05). The shortening of MAPD90 and increased inducibility to ventricular arrhythmias of AMPKα2−/− could almost be abolished when perfusion with β-adrenoceptor antagonist metoprolol. It indicated that the β-adrenoceptor activation resulting from catecholamine release was mainly responsible for the relating changes of electrophysiology of AMPKα2−/−. It had great clinical significance, as in patients who had problem with AMP-activated protein kinase-α2 gene, we might use β-adrenoceptor antagonists as the prevention of arrhythmias in future. Impact statement As far as we know, this is the first time the role of AMP-activated protein kinase-α2 (AMPKα2) on the cardiac electrophysiology is explored, and we found that the β-adrenoceptor activation resulting from catecholamine release was mainly responsible for the changes of electrophysiology related to the absence of AMPKα2. This has great clinical significance, as in patients who have problems with AMPKα2 gene, we may use β-adrenoceptor antagonists for the prevention of arrhythmias in future.

Funder

Fundamental Reseach Funds for the Central Universities

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3