αKlotho attenuates cardiac hypertrophy and increases myocardial fibroblast growth factor 21 expression in uremic rats

Author:

Suassuna Paulo Giovani de Albuquerque12ORCID,Cherem Paula Marocolo1,de Castro Bárbara Bruna1,Maquigussa Edgar3,Cenedeze Marco Antonio3,Lovisi Júlio Cesar Moraes2,Custódio Melani Ribeiro4,Sanders-Pinheiro Helady12ORCID,de Paula Rogério Baumgratz12

Affiliation:

1. Laboratory of Experimental Nephrology (LABNEX) and Interdisciplinary Nucleus of Laboratory Animal Studies (NIDEAL), Federal University of Juiz de Fora (UFJF), Juiz de Fora, Minas Gerais 36036-900, Brazil

2. Interdisciplinary Center for Studies, Research and Treatment in Nephrology (NIEPEN), Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais 36036-900, Brazil

3. Nephrology Division, Department of Medicine, Federal University of São Paulo, São Paulo 04024-002, Brazil

4. Nephrology Division, Department of Medicine, University of São Paulo, São Paulo 01246-903, Brazil

Abstract

In chronic kidney disease (CKD), evidence suggests that soluble αKlotho (sKlotho) has cardioprotective effects. Contrariwise, high circulating levels of fibroblast growth factor 23 (FGF23) are related to uremic cardiomyopathy development. Recently, it has been demonstrated that sKlotho can act as a soluble FGF23 co-receptor, allowing sKlotho to modulate FGF23 actions in the myocardium, leading to the activation of cardioprotective pathways. Fibroblast growth factor 21 (FGF21) is a cardiomyokine with sKlotho-like protective actions and has never been evaluated in uremic cardiomyopathy. Here, we aimed to evaluate whether recombinant αKlotho (rKlotho) replacement can attenuate cardiac remodeling in an established uremic cardiomyopathy, and to explore its impact on myocardial FGF21 expression. Forty-six male Wistar rats were divided into three groups: control, CKD-untreated, and CKD treated with rKlotho (CKD + KL). CKD was induced by 5/6 nephrectomy. From weeks 4–8, the control and CKD-untreated groups received vehicle, whereas the CKD + KL group received subcutaneous rKlotho replacement (0.01 mg/kg) every 48 h. Myocardial remodeling was evaluated by heart weight/tibia length (HW/TL) ratio, echocardiographic parameters, myocardial histomorphometry, and myocardial expression of β-myosin heavy chain (MHCβ), alpha smooth muscle actin (αSMA), transient receptor potential cation channel 6 (TRPC6), and FGF21. As expected, CKD animals had reduced levels of sKlotho and increased serum FGF23 levels. Compared to the control group, manifest myocardial remodeling was present in the CKD-untreated group, while it was attenuated in the CKD + KL group. Furthermore, cardiomyocyte diameter and interstitial fibrotic area were reduced in the CKD + KL group compared to the CKD-untreated group. Similarly, rKlotho replacement was associated with reduced myocardial expression of TRPC6, MHCβ, and αSMA and a higher expression of FGF21. rKlotho showed cardioprotective effects by attenuating myocardial remodeling and reducing TRPC6 expression. Interestingly, rKlotho replacement was also associated with increased myocardial FGF21 expression, suggesting that an interaction between the two cardioprotective pathways needs to be further explored. Impact statement This study aimed to evaluate whether rKlotho replacement can attenuate cardiac remodeling in a post-disease onset therapeutic reasoning and explore the impact on myocardial FGF21 expression. This study contributes significantly to the literature, as the therapeutic effects of rKlotho replacement and FGF21 myocardial expression have not been widely evaluated in a setting of uremic cardiomyopathy. For the first time, it has been demonstrated that subcutaneous rKlotho replacement may attenuate cardiac remodeling in established uremic cardiomyopathy and increase myocardial expression of FGF21, suggesting a correlation between αKlotho and myocardial FGF21 expression. The possibility of interaction between the αKlotho and FGF21 cardioprotective pathways needs to be further explored, but, if confirmed, would point to a therapeutic potential of FGF21 in uremic cardiomyopathy.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3