Senescent B Lymphopoiesis is Balanced in Suppressive Homeostasis: Decrease in Interleukin-7 and Transforming Growth Factor-β Levels in Stromal Cells of Senescence-Accelerated Mice

Author:

Tsuboi Isao12,Morimoto Kohji1,Hirabayashi Yoko1,Li Guang-Xun1,Aizawa Shin2,Mori Kazuhiro J.,Kanno Jun1,Inoue Tohru3

Affiliation:

1. Division of Cellular and Molecular Toxicology, National Institute of Health Sciences, Tokyo 158–8501, Japan

2. Department of Anatomy and Developmental Biology, Nihon University School of Medicine, Tokyo 173–8610, Japan; Department of Molecular and Cellular Biology, Faculty of Science, Niigata University, Niigata 950–2181, Japan

3. Center for Biological Safety and Research, National Institute of Health Sciences, Tokyo 158–8501, Japan

Abstract

The suppression of the B cell population during senescence has been considered to be due to the suppression of interleukin-7 (IL-7) production and responsiveness to IL-7; however, the upregulation of transforming growth factor-β (TGF-β) was found to contribute to B cell suppression. To investigate the mechanism of this suppression based on the interrelationship between IL-7 and TGF-β during senescence, senescence-accelerated mice (SAMs), the mouse model of aging, were used in this study to elucidate the mechanisms of B lymphopoietic suppression during aging. Similar to regular senescent mice, SAMs showed a decrease in the number of IL-7–responding B cell progenitors (i.e., colony-forming unit pre-B [CFU-pre-B] cells in the femoral bone marrow [BM]). A co-culture system of B lymphocytes and stromal cells that the authors established showed a significantly lower number of CFU-pre-B cells harvested when BM cells were co-cultured with senescent stromal cells than when they were co-cultured with young stromal cells. Interestingly, cells harvested from a senescent stroma and those from the control culture without stromal cells were higher in number than those harvested from a young stroma, thereby implying that an altered senescent stromal cell is unable to maintain self-renewal of the stem cell compartment. Because TGF-β is supposed to suppress the proliferative capacity of pro-B/pre-B cells, we added a neutralizing anti-TGF-β antibody to the co-culture system with a pro-B/pre-B cell-rich population to determine whether such suppression may be rescued. However, unexpectedly, any rescue was not observed and the number of CFU-pre-B cells remained unchanged when BM cells were co-cultured with senescent stromal cells compared with the co-culture with young stromal cells, which essentially showed an increase in the number of CFU-pre-B cells (P < 0.001 in 5 μg/ml). Furthermore, TGF-β protein level in the supernatant of cultured senescent stroma cells was evaluated by enzyme-linked immunoabsorbent assay, but surprisingly, it was found that TGF-β concentration was significantly lower than that of cultured young stromal cells. Thus, TGF-β activity was assumed to decline particularly in a senescent stroma, which means a distinct difference between the senescent suppression of B lymphopoiesis and secondary B lymphocytopenia. Concerning proliferative signaling, on the other hand, the level of IL-7 gene expression in cells from freshly isolated BM decreased significantly with age. Therefore, the acceleration of proliferative signaling and the deceleration of suppressive signaling may both be altered and weakened in a senescent stroma (i.e., homeosupression).

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3